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Re¯ection and transmission coef®cients of X-rays by a single atomic plane are

obtained in the general case where the plane consists of any two-dimensional

Bravais lattice and the incident and exit X-ray beams take any direction with

respect to the plane. A formula obtained for the coef®cients is written in a

simple form, different from that obtained by Durbin [Acta Cryst. (1995), A51,

258±268]. This makes it possible to extend Darwin's dynamical theory of X-ray

diffraction to general geometries which include the cases of asymmetric skew

re¯ection and noncoplanar multibeam diffraction.

1. Introduction

Since the advent of synchrotron-radiation sources, X-ray

diffraction has been widely used for studying atomic structures

of crystal surfaces (Eisenberger & Marra, 1981; Als-Nielsen et

al., 1982; Robinson, 1986, 1991; Takahashi et al., 1987;

Feidenhans'l, 1989;). In comparison to techniques using elec-

tron diffraction, which also provides much information on

surface structures, X-ray diffraction allows clear and accurate

interpretation of observed intensity data because the data can

usually be reproduced by the kinematical theory. However,

dynamical treatment is required if multiple diffraction in a

crystal cannot be neglected, for example, in the case of

grazing-incidence geometry (Kishino & Kohra, 1971;

Afanas'ev & Melkonyan, 1983, 1990; Jach et al., 1989;

Stepanov et al., 1996) or close to a Bragg point (Taupin, 1964;

Halliwell et al., 1984).

The dynamical theory proposed by Darwin (1914) is the ®rst

work in which multiple diffraction of X-rays in a perfect

crystal is discussed. By decomposing a perfect crystal into a set

of single atomic planes parallel to the surface and considering

multiple diffraction among them, Darwin obtained a well

known pro®le for symmetrical Bragg re¯ection, `the Darwin

curve'. Recently, Darwin's theory has attracted attention again

because the theory can be applied to calculations not only for

Bragg re¯ection but for CTR (crystal truncation rod) scat-

tering (Caticha, 1994; Nakatani & Takahashi, 1994; Takahashi

& Nakatani, 1995; Durbin & Follis, 1995; Chung & Durbin,

1995; Li et al., 1997). Moreover, the theory is of practical use

for surface X-ray diffraction. It can be rewritten in the form of

a transfer matrix whose elements are made up of transmission

and re¯ection coef®cients of a single atomic plane. The

diffraction process in a crystal whose surface is different from

the substrate is simply described by the product of such

matrices. However, most calculations on Darwin's theory that

have so far been reported are limited to the case where the

scattering plane is perpendicular to the crystal surface.

In the present paper, we extract a formula for the coef®-

cients in general geometry: any two-dimensional Bravais

lattice and any direction of incident and exit X-rays. The result

shows that the formula is written in a simple form similar to

that of Borie (1967), different from the result obtained by

Durbin (1995). This allows one to extend Darwin's dynamical

theory to general geometries which include the cases of

asymmetric skew re¯ection and noncoplanar multibeam

diffraction.

2. Reflection from an atomic plane

In Darwin's theory, one has to obtain the transmission

and re¯ection coef®cients by a single atomic plane. Darwin

obtained formulae for the coef®cients only in the symmetric

Bragg case (Darwin, 1914). Borie extended Darwin's theory

to the symmetric Laue case (Borie, 1966) and even to the

asymmetric Laue case (Borie, 1967). In his paper in 1967,

Borie assumed that the atomic plane consists of a square

lattice in obtaining simple formulae for the asymmetric case,

which can be easily applied to the asymmetric Bragg case

(Warren, 1969). However, in all these papers, the scattering

vector was assumed to be in the plane perpendicular to the

crystal surface. Recently, Durbin has obtained a formulae that

can be used even in the symmetric skew re¯ections from an

atomic plane ± where the scattering plane is not perpendi-

cular to the crystal surface and the directions of incident and

exit waves are symmetric with respect to one of the unit-cell

vectors in the plane (Durbin, 1995). He also assumed the

same condition that Borie did. Durbin used an approximation

in obtaining the formulae, but the result is not so simple as

that obtained by Borie.

Here, we extract a formula without using the approximation

for the coef®cients in general geometry: any two-dimensional

Bravais lattice and any direction of incident and exit X-rays.
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The resulting formula is written in a simple form which is

consistent with Borie's.

We consider the re¯ection from a single atomic plane shown

in Fig. 1 in which the two-dimensional unit cell is de®ned by

unit-cell vectors a1 and a2. Here, a1 and a2 can be allowed to be

in any direction in the atomic plane except that they are

parallel to each other. For simplicity, we assume that the unit

cell contains only one atom; this assumption is not necessary ±

we can easily extend the following discussion to the case where

more than one atom is contained in the unit cell.

Now let us obtain the formula for the electric ®eld ampli-

tude at an observation point P shown in Fig. 1 when a plane

wave of X-rays expressed by a wave vector k0 (jk0j � 1=�, �
being the wavelength) irradiates the atomic plane. Here we

assume the incident wave is linearly polarized. The plane wave

incident on the atomic plane is elastically scattered by the

atoms, each of which coherently generates a spherical wave.

At the point P, the amplitude of the spherical wave from each

atom is given as follows:

Cre f ��� exp�ÿ2�ikr�=r: �1�

Here, C is the polarization factor, re is the classical electron

radius, r is the distance from each atom generating the

spherical wave to P and k is the wave number of the scattered

wave (k � 1=�). The factor f ��� is the atomic scattering factor

(� being the scattering angle) given for X-rays. When more

than one atom is contained in the unit cell, the atomic scat-

tering factor f is replaced by the crystal structure factor F. We

neglect the Debye±Waller factor for simplicity. We de®ne kH

by a vector parallel to OP
�!

whose modulus is 1=�, i.e.

jkHj � 1=�, expressing a diffracted wave. Here, the point O is

the origin of the atomic plane, shown in Fig. 1. The origin is

de®ned so that the diffracted wave goes towards the point P.

In order to obtain the total scattering amplitude at the point

P, we get the phase difference between the wave passing

through O and that passing through any lattice point S in the

atomic plane. We divide the total path into two parts, that is,

the path for the incident wave and that for the scattered wave.

The phase difference for the incident plane wave between the

two paths is given as follows:

ÿ2�k0 � �ma1 � na2�; �2�

where m, n are integers, from which OS
�!

is expressed by

ma1 � na2. Similarly, the phase difference for the scattered

spherical waves is given by

ÿ2�k�rm;n ÿ rH�; �3�

where rm;n � j SP
�!j and rH � jOP

�!j. Since the point P is

suf®ciently far from the atomic plane, we can assume

ma1=rH � 1 and na2=rH � 1. Then we can approximately

reduce rm;n, neglecting the terms higher than second order, to

the following:

rm;n � jrH ÿ �ma1 � na2�j �4�
� �r2

H ÿ 2rH � �ma1 � na2� � jma1 � na2j2�1=2 �5�
� rH ÿ sH � �ma1 � na2�
� jma1 � na2j2 ÿ �sH � �ma1 � na2��2=2rH; �6�

where sH is the unit vector parallel to kH (or rH). Thus, from

(3) and (6), the phase difference for the scattered waves is

rewritten as

ÿ 2�
ÿÿ kH � �ma1 � na2�
� kfjma1 � na2j2 ÿ �sH � �ma1 � na2��2g=2rH

�
: �7�

From (2) and (7), the total phase difference ÿ2���m; n�
between the path via O and that via S is

ÿ2���m; n� � ÿ2�
ÿ�k0 ÿ kH� � �ma1 � na2�

� kfjma1 � na2j2 ÿ �sH � �ma1 � na2��2g=2rH

�
:

�8�
With the two-dimensional Bragg condition, the ®rst term in (8)

is reduced to zero, therefore we have to take only the second

term into account.

Figure 1
The diffraction from a single atomic plane. (a) A bird's-eye view. The
vectors k0, kH represent the wave vectors de®ning the incident and
scattered waves, respectively. The point P is the detecting point. (b) An
enlarged view around the origin O. The vectors a1, a2 are unit-cell vectors
which de®ne the two-dimensional unit cell in the plane. Waves scattered
from all atoms interfere and make a wave®eld at the point P.



Next, we integrate the scattered amplitudes from all atoms

constituting the plane to obtain the amplitude of the electric

®eld at P. Since the dimensions of the unit cell are suf®ciently

small compared to rH, we can treat mj a1j (� x) and nj a2j
(� y) as continuous values. Then the amplitude dEP from an

in®nitesimal area at �x; y� in the atomic plane is given by

dEP � ÿ�CMre f=rH�E0 expfÿ2�i�k�ÿct � rH� ���m; n��g
� jâ1 � â2j dx dy: �9�

Here, M is the number of unit cells per unit area, given by

M � 1=ja1 � a2j; �10�
and â1 and â2 are unit vectors parallel to a1 and a2, respec-

tively. Hence, the total amplitude EP from all the atoms in the

plane is obtained as follows:

EP �
R R

atomic plane

dEP

� ÿ�CMre f=rH�E0 exp�ÿ2�ik�ÿct � rH��jâ1 � â2j
� RR exp�ÿ2�i��m; n�� dx dy: �11�

The integral in the second expression of (11) is the well known

`Fresnel integral'; if the integral region is suf®ciently large, the

integral is reduced to the following:RR
exp�ÿ2�i��m; n�� dx dy � ÿi�rH�; �12�

where � is given by

� � f�1ÿ �sH � â1�2��1ÿ �sH � â2�2�
ÿ ��â1 � â2� ÿ �sH � â1��sH � â2��2gÿ1=2 �13�

(see Appendix A). Hence, from equations (11), (12) and (13),

EP is rewritten as

EP � ÿiqE0 exp�2�ik�ÿct � rH��; �14�
where q is de®ned by

q � ÿCMre f�jâ1 � â2j�: �15�
The factor q corresponds to the re¯ection coef®cient which

was described above. It is worth noting that the diffracted-

wave amplitude EP given by (14) is independent of the

distance rH, that is, the diffracted wave should be regarded as a

`plane wave'.

The above discussion is similar to that of Durbin, although

he assumed symmetric skew re¯ection and a square lattice.

However, he reduced a factor equivalent to � given by (13) to

an approximate form, which is a physically not easily under-

standable form as is given in Appendix B. In the following

discussion, we get a simpler result without further approxi-

mations.

Here we use a familiar formula in vector analysis:

ja� bj2 � jaj2jbj2 ÿ �a � b�2: �16�
Substituting â1 ÿ �â1 � sH�sH and â2 ÿ �â2 � sH�sH into a and b

in (16), we get the following relation:

j�â1 ÿ �â1 � sH�sH � � �â2 ÿ �â2 � sH�sH �j2 �17�
� jâ1 ÿ �â1 � sH�sHj2jâ2 ÿ �â2 � sH�sHj2
ÿ f�â1 ÿ �â1 � sH�sH � � �â2 ÿ �â2 � sH�sH �g2
� �1ÿ �sH � â1�2��1ÿ �sH � â2�2�
ÿ ��â1 � â2� ÿ �sH � â1��sH � â2��2: �18�

Thus, from (13) and (17), we can rewrite � in the form

� � j�â1 ÿ �â1 � sH�sH � � �â2 ÿ �â2 � sH�sH �jÿ1: �19�
In fact, â1 ÿ �â1 � sH�sH and â2 ÿ �â2 � sH�sH are, respectively,

the projections of â1 and â2 into the plane perpendicular

to kH. Thereby, j�â1 ÿ �â1 � sH�sH � � �â2 ÿ �â2 � sH�sH �j is the

projection of the parallelogram de®ned by â1 and â2 into the

plane perpendicular to kH. Hence, de®ning �H as the angle

between sH and the atomic plane, we get the following rela-

tion:

sin �H � j�â1 ÿ �â1 � sH�sH � � �â2 ÿ �â2 � sH�sH �j=jâ1 � â2j:
�20�

Consequently, from (15), (19) and (20), we get a simple

formula for the coef®cient:

qH � ÿCMre f�=sin �H : �21�
This result is consistent with that obtained by Borie. The

transmission coef®cient q0 in general geometry is also

extracted by the same procedure.

3. Discussion

Applying our result to Darwin's theory, we can obtain

re¯ectivities and transmissivities by a crystal in any geometry ±

we can assume any Bravais lattice and any direction of inci-

dent or exit X-rays. In the two-beam approximation, we can

easily extend the result obtained by Takahashi & Nakatani

(1995) even to the case where the scattering plane is not

perpendicular to the crystal surface, as shown in Fig. 2. In fact,

using q given by (21), we can write the re¯ection and trans-

mission coef®cients from a single plane in the same form as

theirs:

t0 � 1ÿ iq0;

rH � ÿiqH;
�22�

where

q0 � ÿMre f �0��=
0;

qH � ÿCMre f ��H��=
H

�23�

and


0 � sin �0; �24�

H � sin �H : �25�

The angle �H is de®ned in Fig. 2. As a result, by means of their

method, we can get the absolute re¯ectivity from a crystal at

any point on any reciprocal rod.

For example, the re¯ection coef®cient from a semi-in®nite

perfect crystal, RH;1, is given in the same form as the case
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where the scattering plane is perpendicular to the crystal

surface:

RH;1 �
ÿ
rH=frHr �H exp�ÿi�'0 � 'H��g

�1=2��� ��2 ÿ 1�1=2�
� ÿjbj1=2�C=jCj�fFH=�FHF �H exp�ÿi2�l��1=2g
� ��� ��2 ÿ 1�1=2�; �26�

where � corresponds to the so-called `deviation parameter'

(Batterman & Cole, 1964), which is de®ned by

� � f1ÿ �t0tH ÿ rHr �H� exp�ÿi�'0 � 'H��g
� 2frHr �H exp�ÿi�'0 � 'H��g1=2
ÿ �ÿ1

: �27�
The variables '0, 'H are the phase retardation of incident and

exit waves:

'0 � 2�j a3j=�
0;

'H � 2�j a3j=�
H;
�28�

and they are related with the index l designating a point on the

rod by '0 � 'H � 2�l. Here, a3 is the unit-cell vector which is

de®ned to be perpendicular to the crystal surface. Note that

electric ®elds of incident and exit waves should be decom-

posed into directions parallel and perpendicular to the scat-

tering plane de®ned by these waves.

Expression (26) is correct at any point along any reciprocal

rod. Near a Bragg point, it gives the familiar Darwin curve;

this result is consistent with that obtained by Laue's dynamical

theory in the case of asymmetric skew re¯ection (Zachariasen,

1967). At a point far from a Bragg re¯ection angle, re¯ectivity

from a semi-in®nite crystal, PH;1, is written as

PH;1
P0

� �
2C2


0
H

j a3j2re
2

V2

FH

1ÿ exp�ÿi2�l�
���� ����2: �29�

This formula says that, even in general geometry, the absolute

CTR scattering intensity can be calculated from the kinema-

tical theory using the same correction factor as that obtained

by Takahashi & Nakatani (1995).

Takahashi & Nakatani have shown that the theory can be

extended to the coplanar three-beam case where the scat-

tering plane is perpendicular to the crystal surface (Takahashi

& Nakatani, 1995). However, if the electric ®eld is decom-

posed in the same manner as the two-beam case, their calcu-

lation is also correct even in the case where the scattering

plane is not perpendicular to the surface.

Furthermore, we can extend the Darwin theory to the

noncoplanar multibeam case. Near the Bragg points, using the

formulae obtained in the present paper, one can show analy-

tically that the Darwin theory is equivalent to the Laue theory

for the noncoplanar multiwave Bragg re¯ection from a semi-

in®nite perfect crystal (Chang, 1984) if the directions of the

incident and all the exit waves take a suf®ciently large angle

compared to the critical angle of total re¯ection. It is worth

noting that Darwin's original theory is not available for cases

when the incident and/or exit waves make angles less than

several times the critical angle. The extension of Darwin's

theory to such cases is discussed elsewhere.

4. Conclusions

We obtained a simple formula for re¯ection and transmission

coef®cients by a single atomic plane in general geometry. The

formula (21) obtained by us is similar to that obtained by

Borie (1967). This makes it possible to extend Darwin's

dynamical theory of X-ray diffraction (Takahashi & Nakatani,

1995) to more general arrangements such as asymmetric skew

re¯ection and noncoplanar multibeam diffraction.

APPENDIX A
Calculation of the Fresnel integral

In order to calculate the Fresnel integral in equations (13) and

(36), we used the following relation:RR
exp�ÿ2�iA�ax2 � 2bxy� dy2�� dx dy

� ÿi=�2A�adÿ b2�1=2�; �30�

which is easily obtained using

Figure 2
(a) Re¯ection and transmission by a crystal in general geometry. In
Darwin's theory, a crystal is divided into atomic planes parallel to the
crystal surface. (b) The de®nitions of transmission and re¯ection
coef®cients from a single atomic plane.



RR
exp�ÿ2�i�x02 � y02�� dx0 dy0 � �1ÿ i�2 �31�

� ÿ2i: �32�

APPENDIX B
Comparison with the formula obtained by Durbin

Durbin gives an approximate formula for symmetric skew

re¯ection from an atomic plane (Durbin, 1995). His formula

can be obtained from our rigorous formulae shown in x2. In

our notation, the approximate equation (B7) in Durbin's

paper corresponds to the following:

��m; n�

� k
�jma1 � na2j2 ÿ �m2�sH � a1�2 � n2�sH � a2�2�

	
2rH

�33�

� k
�

x2�1ÿ �sH � â1�2� � y2�1ÿ �sH � â2�2� � 2xy�â1 � â2�
	

2rH

:

�34�
If the atomic plane consists of a square lattice, i.e. a1 � a2 � 0

and ja1j � ja2j, using (34), q is written as follows:

q � ÿ�CMre f �; �35�
where

� � f�1ÿ �sH � â1�2��1ÿ �sH � â2�2�gÿ1=2: �36�
Substituting q in the above equation into (14), we can obtain

an equation identical to equation (B8) in Durbin's paper,

which is less simple than our result. In addition, using (21), we

can show that the integrated intensities of plane- and spheri-

cal-wave models across a ®nite detector area, which were

discussed in Appendix C of Durbin (1995), are identical even

in our general geometry, whereas he showed this fact only in

the case of symmetric re¯ection.
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